全同粒子

具有完全相同内禀属性的粒子

全同粒子(identical particles)是指具有完全相同内禀属性的粒子。 自然界中存在不同种类的粒子,如电子、 质子 、中子、光子π介子 等。它们可以是基本粒子,也可以是由基本粒子构成的复合粒子(如α粒子)。以电子为例,不管其来源如何,根据实验测定 ,每个电子的静止质量均为me=9.109534(±47)×10-31 Kg ,电荷为-e [e=1.6021892 (± 46)×10-19C],自旋为ħ/2。每一种粒子各自具有特定的内禀属性,包括 静质量、电荷、自旋、磁矩、寿命等。量子力学中把属于同一类的具有完全相同的内禀属性的粒子称为全同粒子。

理论诠释
粒子全同性概念与粒子态的量子化有本质上的联系。如果没有态的量子化,就谈不上全同性。经典物理学中 ,由于粒子的性质(质量、大小、形状等)可连续变化,谈不上两个粒子真正全同。
全同粒子组成的多体系的哈密顿量,对于任何两个粒子交换是对称(不变)的。实验表明,全同粒子体系状态的交换对称性,取决于粒子的自旋。量子力学中这种全同性导致全同多粒子体系波函数对于粒子交换的对称性 。对于自旋是ħ整数倍(包含0)的粒子,如π介子(自旋为0)和光子(自旋为ħ),波函数对于任何两个全同粒子交换是对称的(不改变正负号),称为玻色子。对于自旋是ħ的半奇数倍的粒子,如电子、质子和中子(自旋为ħ/2),波函数对于任何两个全同粒子交换是反对称的(改变正负号),称为费米子
粒子全同性不应认为只是一个抽象概念,它是可观测量。全同费米子体系必须遵守泡利不相容原理,它是理解化学元素周期律原子中的电子壳结构)的关键。量子力学出现后,在全同性原理的基础上从理论上证明了这一原理。泡利原理是原子、分子以及原子核结构的理论基础之一。而全同玻色子体系则允许任意多个粒子处于同一量子态,在适当条件下则可能出现玻色-爱因斯坦凝聚现象。
具体说明
全同粒子的存在是客观物质世界的一项基本实验事实,也是被物理学界所普遍接受的一项基本理论信念。仍以电子的电荷为例,虽然实验测量受到精确度的限制,而且各次测量结果在最后几位有效数字上有出入,但是当前绝大多数物理学家仍一致相信,所有电子(包括未被测量过的电子)的电荷值应该完全相同,没有丝毫差别。任何物理理论,尤其是量子理论,都是在这种信念的基础上建立起来的。
一个由若干个全同粒子组成的物理体系,其运动状态的全部性质原则上应该可以由外部的“观测者”(例如其他基本粒子)通过同这个体系的相互作用而一一查明。假如交换体系中任意两个粒子(第i个和第j个)的运动状况,因为实行交换的粒子是全同的,外界“观测者”的观测结果显然不会受到任何影响,所以必须认为粒子i和j实行交换后体系仍处于同一运动状态。这个观点以及下面说的波函数具有交换对称性或反对称性通常称为全同性原理。如以Ψ表示交换前描述体系状态的波函数。pijΨ 表示交换后体系的波函数,Ψ和pijΨ 既然描述同一状态,它们最多相差一个常数因子。由于接连交换两次波函数必须还原,这个常数因子只能是±1。当pijΨ=+Ψ,就称体系状态为交换对称的;当pijΨ=-Ψ,则称为交换反对称的。
实验表明,全同粒子体系状态的交换对称性,取决于粒子的自旋,凡是自旋等于h-整数倍(0,h-,2h-,…)的全同粒子系,波函数是交换对称的,并遵守玻色-爱因斯坦统计法则。这类粒子称为玻色子。凡自旋等于h-的半整数倍(h-/2,3h-/2,…)的全同粒子系,波函数是交换反对称的,并遵守费密-狄拉克统计法则,这类粒子称为费密子。光子(自旋为h-),α粒子π介子(自旋为0)则是玻色子;电子、质子、中子(自旋为h-/2)则是费密子。对于全同费密子体系,体系中不能有两个或两个以上粒子同时处于相同的单粒子态。即每一个单粒子态最多只能容纳一个粒子。这个结论称为泡利不相容原理。玻色子体系不受泡利原理的限制,而且,由于粒子总是自发地向低能级跃迁,玻色子有向基态能级凝聚的倾向,这是产生低温超导和超流现象的基本原因。
重要特点
在同样的条件下,它们的物理行为完全相同,因此用一个全同粒子代替另一个,不会引起物理状态的变化。在经典力学中,可以从粒子运动的不同轨道来区分不同的粒子。而在量子力学中,由于波粒二象性,随着时间的变化,在传播过程中总会出现重叠,因此全同粒子在量子力学中是不可区分的。由全同性原理可以推知,全同粒子组成体系的哈密顿算符具有交换对称性。
地位
全同粒子是量子力学的基本概念之一。指内禀属性(质量、电荷、自旋等)完全相同的粒子。它们可以是基本粒子,也可以是由基本粒子构成的复合粒子(如α粒子)。
量子力学
量子力学是研究微观粒子运动规律的理论,是现代物理学的理论基础之一。量子力学是在本世纪20年代中期建立起来的。19世纪末,人们发现大量的物理实验事实不能再用经典物理学中能量是完全连续性的理论来解释。1900年,德国物理学家普朗克提出了能量子假说,用量子化即能量具有的不连续性,解释了黑体辐射能量分布问题。1905年,爱因斯坦在此基础上提出了光量子假说,第一次揭示出光具有波粒二象性,成功地解释了光电效应问题。1906年,爱因斯坦又用量子理论解决了低温固体比热问题。接着,丹麦物理学家玻尔提出了解释原子光谱线的原子结构的量子论,并经德国物理学家索末菲等人所修正和推广。1924年,德国物理学家德布罗意在爱因斯坦光量子假说启示下,提出了物质波假说,指出一切实物粒子也同光一样都具有波粒二象性。1925年,德国物理学家海森堡和玻恩、约尔丹以矩阵的数学形式描述微观粒子的运动规律,建立了矩阵力学。接着,奥地利物理学家薛定谔以波动方程的形式描述微观粒子的运动规律,建立了波动力学。不久,薛定谔证明,这两种力学完全等效,这就是今天的量子力学。量子力学用波函数描写微观粒子的运动状态,以薛定谔方程确定波函数的变化规律。应用量子力学的方法解决原子分子范围内的问题时,得出了与实验相符的结果;量子力学用于宏观物体或质量、能量相当大的粒子时,也能得出与经典力学一样的结论。因此,量子力学的建立大大促进了原子物理、固体物理和原子核物理学的发展,并推动了半导体、激光和超导等新技术的应用。它标志着人类认识已从宏观领域深入到微观领域。量子力学为哲学研究的发展开辟了新的领域,它向人们提出了一系列新的哲学课题,诸如微观客体的存在特征、微观世界是否存在因果关系、主客体在原则上是否不可分、主客体之间的互补问题等等。深入和正确地回答这些问题,无疑将会推动马克思主义哲学的深入发展。
全国各地天气预报查询

上海市

  • 市辖区
  • 云南省

  • 临沧市
  • 云南省

  • 丽江市
  • 云南省

  • 保山市
  • 云南省

  • 大理白族自治州
  • 云南省

  • 德宏傣族景颇族自治州
  • 云南省

  • 怒江傈僳族自治州
  • 云南省

  • 文山壮族苗族自治州
  • 云南省

  • 昆明市
  • 云南省

  • 昭通市
  • 云南省

  • 普洱市
  • 云南省

  • 曲靖市
  • 云南省

  • 楚雄彝族自治州
  • 云南省

  • 玉溪市
  • 云南省

  • 红河哈尼族彝族自治州
  • 云南省

  • 西双版纳傣族自治州
  • 云南省

  • 迪庆藏族自治州
  • 内蒙古自治区

  • 乌兰察布市
  • 内蒙古自治区

  • 乌海市
  • 内蒙古自治区

  • 兴安盟
  • 内蒙古自治区

  • 包头市
  • 内蒙古自治区

  • 呼伦贝尔市
  • 内蒙古自治区

  • 呼和浩特市
  • 内蒙古自治区

  • 巴彦淖尔市
  • 内蒙古自治区

  • 赤峰市
  • 内蒙古自治区

  • 通辽市
  • 内蒙古自治区

  • 鄂尔多斯市
  • 内蒙古自治区

  • 锡林郭勒盟
  • 内蒙古自治区

  • 阿拉善盟
  • 北京市

  • 市辖区
  • 吉林省

  • 吉林市
  • 吉林省

  • 四平市
  • 吉林省

  • 延边朝鲜族自治州
  • 吉林省

  • 松原市
  • 吉林省

  • 白城市
  • 吉林省

  • 白山市
  • 吉林省

  • 辽源市
  • 吉林省

  • 通化市
  • 吉林省

  • 长春市
  • 四川省

  • 乐山市
  • 四川省

  • 内江市
  • 四川省

  • 凉山彝族自治州
  • 四川省

  • 南充市
  • 四川省

  • 宜宾市
  • 四川省

  • 巴中市
  • 四川省

  • 广元市
  • 四川省

  • 广安市
  • 四川省

  • 德阳市
  • 四川省

  • 成都市
  • 四川省

  • 攀枝花市
  • 四川省

  • 泸州市
  • 四川省

  • 甘孜藏族自治州
  • 四川省

  • 眉山市
  • 四川省

  • 绵阳市
  • 四川省

  • 自贡市
  • 四川省

  • 资阳市
  • 四川省

  • 达州市
  • 四川省

  • 遂宁市
  • 四川省

  • 阿坝藏族羌族自治州
  • 四川省

  • 雅安市
  • 天津市

  • 市辖区
  • 宁夏回族自治区

  • 中卫市
  • 宁夏回族自治区

  • 吴忠市
  • 宁夏回族自治区

  • 固原市
  • 宁夏回族自治区

  • 石嘴山市
  • 宁夏回族自治区

  • 银川市
  • 安徽省

  • 亳州市
  • 安徽省

  • 六安市
  • 安徽省

  • 合肥市
  • 安徽省

  • 安庆市
  • 安徽省

  • 宣城市
  • 安徽省

  • 宿州市
  • 安徽省

  • 池州市
  • 安徽省

  • 淮北市
  • 安徽省

  • 淮南市
  • 安徽省

  • 滁州市
  • 安徽省

  • 芜湖市
  • 安徽省

  • 蚌埠市
  • 安徽省

  • 铜陵市
  • 安徽省

  • 阜阳市
  • 安徽省

  • 马鞍山市
  • 安徽省

  • 黄山市
  • 山东省

  • 东营市
  • 山东省

  • 临沂市
  • 山东省

  • 威海市
  • 山东省

  • 德州市
  • 山东省

  • 日照市
  • 山东省

  • 枣庄市
  • 山东省

  • 泰安市
  • 山东省

  • 济南市
  • 山东省

  • 济宁市
  • 山东省

  • 淄博市
  • 山东省

  • 滨州市
  • 山东省

  • 潍坊市
  • 山东省

  • 烟台市
  • 山东省

  • 聊城市
  • 山东省

  • 菏泽市
  • 山东省

  • 青岛市
  • 山西省

  • 临汾市
  • 山西省

  • 吕梁市
  • 山西省

  • 大同市
  • 山西省

  • 太原市
  • 山西省

  • 忻州市
  • 山西省

  • 晋中市
  • 山西省

  • 晋城市
  • 山西省

  • 朔州市
  • 山西省

  • 运城市
  • 山西省

  • 长治市
  • 山西省

  • 阳泉市
  • 广东省

  • 东莞市
  • 广东省

  • 中山市
  • 广东省

  • 云浮市
  • 广东省

  • 佛山市
  • 广东省

  • 广州市
  • 广东省

  • 惠州市
  • 广东省

  • 揭阳市
  • 广东省

  • 梅州市
  • 广东省

  • 汕头市
  • 广东省

  • 汕尾市
  • 广东省

  • 江门市
  • 广东省

  • 河源市
  • 广东省

  • 深圳市
  • 广东省

  • 清远市
  • 广东省

  • 湛江市
  • 广东省

  • 潮州市
  • 广东省

  • 珠海市
  • 广东省

  • 肇庆市
  • 广东省

  • 茂名市
  • 广东省

  • 阳江市
  • 广东省

  • 韶关市
  • 广西壮族自治区

  • 北海市
  • 广西壮族自治区

  • 南宁市
  • 广西壮族自治区

  • 崇左市
  • 广西壮族自治区

  • 来宾市
  • 广西壮族自治区

  • 柳州市
  • 广西壮族自治区

  • 桂林市
  • 广西壮族自治区

  • 梧州市
  • 广西壮族自治区

  • 河池市
  • 广西壮族自治区

  • 玉林市
  • 广西壮族自治区

  • 百色市
  • 广西壮族自治区

  • 贵港市
  • 广西壮族自治区

  • 贺州市
  • 广西壮族自治区

  • 钦州市
  • 广西壮族自治区

  • 防城港市
  • 新疆维吾尔自治区

  • 乌鲁木齐市
  • 新疆维吾尔自治区

  • 伊犁哈萨克自治州
  • 新疆维吾尔自治区

  • 克孜勒苏柯尔克孜自治州
  • 新疆维吾尔自治区

  • 克拉玛依市
  • 新疆维吾尔自治区

  • 博尔塔拉蒙古自治州
  • 新疆维吾尔自治区

  • 吐鲁番市
  • 新疆维吾尔自治区

  • 和田地区
  • 新疆维吾尔自治区

  • 哈密市
  • 新疆维吾尔自治区

  • 喀什地区
  • 新疆维吾尔自治区

  • 塔城地区
  • 新疆维吾尔自治区

  • 巴音郭楞蒙古自治州
  • 新疆维吾尔自治区

  • 昌吉回族自治州
  • 新疆维吾尔自治区

  • 自治区直辖县级行政区划
  • 新疆维吾尔自治区

  • 阿克苏地区
  • 新疆维吾尔自治区

  • 阿勒泰地区
  • 江苏省

  • 南京市
  • 江苏省

  • 南通市
  • 江苏省

  • 宿迁市
  • 江苏省

  • 常州市
  • 江苏省

  • 徐州市
  • 江苏省

  • 扬州市
  • 江苏省

  • 无锡市
  • 江苏省

  • 泰州市
  • 江苏省

  • 淮安市
  • 江苏省

  • 盐城市
  • 江苏省

  • 苏州市
  • 江苏省

  • 连云港市
  • 江苏省

  • 镇江市
  • 江西省

  • 上饶市
  • 江西省

  • 九江市
  • 江西省

  • 南昌市
  • 江西省

  • 吉安市
  • 江西省

  • 宜春市
  • 江西省

  • 抚州市
  • 江西省

  • 新余市
  • 江西省

  • 景德镇市
  • 江西省

  • 萍乡市
  • 江西省

  • 赣州市
  • 江西省

  • 鹰潭市
  • 河北省

  • 保定市
  • 河北省

  • 唐山市
  • 河北省

  • 廊坊市
  • 河北省

  • 张家口市
  • 河北省

  • 承德市
  • 河北省

  • 沧州市
  • 河北省

  • 石家庄市
  • 河北省

  • 秦皇岛市
  • 河北省

  • 衡水市
  • 河北省

  • 邢台市
  • 河北省

  • 邯郸市
  • 河南省

  • 三门峡市
  • 河南省

  • 信阳市
  • 河南省

  • 南阳市
  • 河南省

  • 周口市
  • 河南省

  • 商丘市
  • 河南省

  • 安阳市
  • 河南省

  • 平顶山市
  • 河南省

  • 开封市
  • 河南省

  • 新乡市
  • 河南省

  • 洛阳市
  • 河南省

  • 漯河市
  • 河南省

  • 濮阳市
  • 河南省

  • 焦作市
  • 河南省

  • 省直辖县级行政区划
  • 河南省

  • 许昌市
  • 河南省

  • 郑州市
  • 河南省

  • 驻马店市
  • 河南省

  • 鹤壁市
  • 浙江省

  • 丽水市
  • 浙江省

  • 台州市
  • 浙江省

  • 嘉兴市
  • 浙江省

  • 宁波市
  • 浙江省

  • 杭州市
  • 浙江省

  • 温州市
  • 浙江省

  • 湖州市
  • 浙江省

  • 绍兴市
  • 浙江省

  • 舟山市
  • 浙江省

  • 衢州市
  • 浙江省

  • 金华市
  • 海南省

  • 三亚市
  • 海南省

  • 三沙市
  • 海南省

  • 儋州市
  • 海南省

  • 海口市
  • 海南省

  • 省直辖县级行政区划
  • 湖北省

  • 十堰市
  • 湖北省

  • 咸宁市
  • 湖北省

  • 孝感市
  • 湖北省

  • 宜昌市
  • 湖北省

  • 恩施土家族苗族自治州
  • 湖北省

  • 武汉市
  • 湖北省

  • 省直辖县级行政区划
  • 湖北省

  • 荆州市
  • 湖北省

  • 荆门市
  • 湖北省

  • 襄阳市
  • 湖北省

  • 鄂州市
  • 湖北省

  • 随州市
  • 湖北省

  • 黄冈市
  • 湖北省

  • 黄石市
  • 湖南省

  • 娄底市
  • 湖南省

  • 岳阳市
  • 湖南省

  • 常德市
  • 湖南省

  • 张家界市
  • 湖南省

  • 怀化市
  • 湖南省

  • 株洲市
  • 湖南省

  • 永州市
  • 湖南省

  • 湘潭市
  • 湖南省

  • 湘西土家族苗族自治州
  • 湖南省

  • 益阳市
  • 湖南省

  • 衡阳市
  • 湖南省

  • 邵阳市
  • 湖南省

  • 郴州市
  • 湖南省

  • 长沙市
  • 甘肃省

  • 临夏回族自治州
  • 甘肃省

  • 兰州市
  • 甘肃省

  • 嘉峪关市
  • 甘肃省

  • 天水市
  • 甘肃省

  • 定西市
  • 甘肃省

  • 平凉市
  • 甘肃省

  • 庆阳市
  • 甘肃省

  • 张掖市
  • 甘肃省

  • 武威市
  • 甘肃省

  • 甘南藏族自治州
  • 甘肃省

  • 白银市
  • 甘肃省

  • 酒泉市
  • 甘肃省

  • 金昌市
  • 甘肃省

  • 陇南市
  • 福建省

  • 三明市
  • 福建省

  • 南平市
  • 福建省

  • 厦门市
  • 福建省

  • 宁德市
  • 福建省

  • 泉州市
  • 福建省

  • 漳州市
  • 福建省

  • 福州市
  • 福建省

  • 莆田市
  • 福建省

  • 龙岩市
  • 西藏自治区

  • 山南市
  • 西藏自治区

  • 拉萨市
  • 西藏自治区

  • 日喀则市
  • 西藏自治区

  • 昌都市
  • 西藏自治区

  • 林芝市
  • 西藏自治区

  • 那曲市
  • 西藏自治区

  • 阿里地区
  • 贵州省

  • 六盘水市
  • 贵州省

  • 安顺市
  • 贵州省

  • 毕节市
  • 贵州省

  • 贵阳市
  • 贵州省

  • 遵义市
  • 贵州省

  • 铜仁市
  • 贵州省

  • 黔东南苗族侗族自治州
  • 贵州省

  • 黔南布依族苗族自治州
  • 贵州省

  • 黔西南布依族苗族自治州
  • 辽宁省

  • 丹东市
  • 辽宁省

  • 大连市
  • 辽宁省

  • 抚顺市
  • 辽宁省

  • 朝阳市
  • 辽宁省

  • 本溪市
  • 辽宁省

  • 沈阳市
  • 辽宁省

  • 盘锦市
  • 辽宁省

  • 营口市
  • 辽宁省

  • 葫芦岛市
  • 辽宁省

  • 辽阳市
  • 辽宁省

  • 铁岭市
  • 辽宁省

  • 锦州市
  • 辽宁省

  • 阜新市
  • 辽宁省

  • 鞍山市
  • 重庆市

  • 重庆市

  • 市辖区
  • 陕西省

  • 咸阳市
  • 陕西省

  • 商洛市
  • 陕西省

  • 安康市
  • 陕西省

  • 宝鸡市
  • 陕西省

  • 延安市
  • 陕西省

  • 榆林市
  • 陕西省

  • 汉中市
  • 陕西省

  • 渭南市
  • 陕西省

  • 西安市
  • 陕西省

  • 铜川市
  • 青海省

  • 果洛藏族自治州
  • 青海省

  • 海东市
  • 青海省

  • 海北藏族自治州
  • 青海省

  • 海南藏族自治州
  • 青海省

  • 海西蒙古族藏族自治州
  • 青海省

  • 玉树藏族自治州
  • 青海省

  • 西宁市
  • 青海省

  • 黄南藏族自治州
  • 黑龙江省

  • 七台河市
  • 黑龙江省

  • 伊春市
  • 黑龙江省

  • 佳木斯市
  • 黑龙江省

  • 双鸭山市
  • 黑龙江省

  • 哈尔滨市
  • 黑龙江省

  • 大兴安岭地区
  • 黑龙江省

  • 大庆市
  • 黑龙江省

  • 牡丹江市
  • 黑龙江省

  • 绥化市
  • 黑龙江省

  • 鸡西市
  • 黑龙江省

  • 鹤岗市
  • 黑龙江省

  • 黑河市
  • 黑龙江省

  • 齐齐哈尔市