固体的能带

物理学概念

固体的能带是现代物理学描绘固体中原子外层电子运动的一种图像

简介
当原子互相靠近结成固体时,各个原子的内层电子仍然组成围绕各原子核的封闭壳层,和孤立原子一样;然而,外层价电子则参与原子间的相互作用,应该把它们看成是属于整个固体的一种新的运动状态。
1928年,F.布洛赫首先运用量子力学的原理来分析晶体中的外层电子的运动。他指出,由于晶体中原子作规则排列,电子是在一个周期势场中运动。单个电子的波函数(,)应该满足薛定谔方程
, (1)
式中势能
, (2)
是晶体的任一点阵矢:
, (3)
式中、、是点阵的基矢,、、为整数。布洛赫证明,满足方程(1)的解具有一般形式
, (4)
式中
(5)
是一个和( )同周期的函数。这个论断称为布洛赫定理,形式如式(4)的波函数称为布洛赫函数,它反映晶体中电子运动的基本性质。式(1)的本征值( )代表在周期性势场中单电子态的能量。其中为波矢,它的变化范围限制在波矢空间的一个多面体之内,这多面体称为布里渊区,其形状和大小由晶体结构决定。下标是本征能量的序号,第个( )所确定的能量范围称为第个能带。按照泡利不相容原理,每个能带可容纳晶体元胞数目二倍的电子。晶体电子按低能态到高能态的顺序填充能带。价电子所处的能带以及能量更高的空带同固体的许多物理和化学性质密切有关。
能带的图像(图1)可以说明金属半导体绝缘体的区别。金属都有部分被电子占据的宽能带,称为导带,在这种能带中空着的电子态的能量与被占的态相连接,能带填充情况很容易被电场作用所改变,表现出良好的导电性。绝缘体则是另一种极端情况,电子恰好填满最低的一系列能带,其最高的满带有时称为价带,更高的各能带都空着。满带与空带之间隔着较宽的禁带,电场很难使能带的填充情况改变,因而不产生电流。半导体的能带填充情况很像绝缘体,但是空导带与价带之间的禁带比绝缘体窄得多,因此可以引入杂质或热激发,使空导带出现了少数电子,或价带中出现少数空穴,或兼有二者,从而有一定的导电性
对于某一个能带(略去序号),( )是波矢的偶函数,即( )=(-)。在状态( )中的电子,具有平均速度
(6)
式中为波矢空间的笛卡儿坐标符号。由此可知,一个能带中和-两个状态电子的能量相等,但平均速度数值相等而符号相反。
在能带的极值点 (=点)附近,价电子状态的能量可以写成
(7)
由此可以规定电子的有效质量
(8)
一般说,晶体电子的有效质量是一个二阶张量。在简单情况下,电子的有效质量为标量
(9)
有效质量反映了晶体周期性势场对电子的影响。晶体电子和自由电子的行为类似,两者的区别在于晶体电子用有效质量替代自由电子的惯性质量
固体的许多物理性质,例如电子的比热容光吸收和光发射等都同态密度这个函数有密切的关系。态密度函数记作( ),其定义是在能量附近单位能量间隔内闪电子态的数目,即
, (10)
式中为晶体元胞的体积,是狄喇克函数,积分遍及整个布里渊区。
在外加电场磁感应强度场中,电子态以及电子的平均速度都要变化。在外加场较小的情况,电子的运动服从经典的规律:
。 (11)
所以在有效质量是二阶张量的情况,电子的加速度方向和外场力的方向不一致,只有在晶体电子有效质量为标量的简单情况,电子加速度和外场力的方向相一致。
波函数也可以改写成另一种形式:
, (12)
式中是晶体元胞的体积,而
(13)
是一个以阵点为中心的局域性函数,称为万尼尔函数
能带结构是决定固体各种特殊物理性质的重要因素,对具体材料的能带进行理论计算和实验研究一直是半个世纪来固体物理中的一个重要的基础性课题。人们已对各种简单金属、半导体及许多包含 d电子的过渡金属及其结构比较简单的化合物的能带结构作了较可靠的理论计算,与实验观测基本相符。
严格计算三维晶体点阵中的单电子波函数(,)在数学上是极困难的。人们只能求得它的不同精确程度的近似解。下面简要介绍计算固体能带的一些理论方法。
紧束缚近似 布洛赫在1928年首先提出一个描写晶体单电子波函数的紧束缚近似。他考虑电子在阵点附近主要是受到原子场的作用。因此仍然可以用在处的孤立原子中的电子束缚态(-)来近似地描述。然而,电子又可以在整个晶体中作共有化运动,所以对整个波函数(,)可以取各个阵点原子的束缚态的线性组合来作近似描述,也就是设
, (14)
代入方程(1)得到
, (15)
, (16)
式中( )称为重叠积分,它在这种近似描述中反映相距的两个原子对外层电子的影响。
, (17)
而( )代表在孤立原子中电子的势,代表孤立原子中电子的能级。
由式 (16)可以看到电子在晶体中作共有化运动时其能量与孤立原子中的能量有所不同,它随着波矢而变化。这样,对应于孤立原子中的一个量子态,在固体中有由个间隔很近的能级组成的“带”,称为“能带”,如图2所示。能带的宽度取决于重叠积分( ),如果各不同原子的波函数之间的重叠愈多,由式(17)可见重叠积分( )的值会愈大,能带也愈宽。原子内层的电子轨道很小,在不同原子之间很少重叠,因此能带很窄,而外层电子的轨道在不同原子间重叠很多,所对应的能带也较宽。在两个能带之间没有电子态的能量区间称为禁带。
固体的能带
上面讲到的紧束缚近似又称为原子轨道线性组合法。它一般运用于不同原子之间轨道重叠较少的窄禁带固体。
近自由电子近似 也可从另一方向来近似描述固体中的电子运动,把式(1)中的周期势( )分成两部分:
,  (18)
式中堸是一个常数, 是( )的平均值。把式(12)代入式(1)并且把Δ( )看成微扰势,采用平面波作(,)的零级近似,用微扰论处理就得到电子能谱的各级近似:
, (19)
式中
(20)
如果对所有不为零的倒易点阵矢量都有
的关系,则
, (21)
电子的能谱与自由电子十分近似。但是在布里渊区边界面上有时,上述微扰方法不能使用,需用简并微扰论来求( )。可以证明,在这种波矢的附近( )会出现一个“能隙”(图3),也就是禁带。以上这种处理方法称为近自由电子近似,它所给出的图像与对简单金属的实验观测基本相合。
方法
正交化平面波法 但是,如果考虑晶体势Δ( )大体相当于离子实对电子的库仑势,它在阵点附近的涨落是很大的,如果用平面波来展开布洛赫函数,就必须考虑许多包含各种的项,在计算上是很困难的。
C.赫林在1940年建议用一套与各原子的内层电子轨道都互相正交的平面波Ⅹ(,)来代替平面波作为描写电子波函数(,)的基:
, (22)
式中是原子内层(离子实)的电子波函数,( )是系数,它由正交条件
(23)
决定。以函数Ⅹ(,)为基的处理方法称为正交化平面波法。用这种方法对半导体和简单金属的能带进行计算时,收敛性比以前好得多,取得了很大的成功。这是因为正交化平面波比单纯的平面波更接近固体中共有化电子的实际运动。
赝势法 如果把正交化平面波的式(22)代入晶体的薛定谔方程(1),就可以得出如下的表达式:
, (24)
式中代表式(22)等式右方第一项的平面波部分,因为它总是和正交化平面波Ⅹ一一对应的,可以把它用作代表实际波函数的某种赝波函数。式中其余新符号的定义是:
, (25)
, (26)
。 (27)
这样,可以看到在这个晶体的薛定谔方程的新形式(24)中,起势能作用的是赝波函数中的,通常把它称为赝势。它是由库化势( )与两部分组成。从(26)式可以定性地看出,由于传导电子的本征能量E比大体相当于离子实电子的能量的大得多,的作用相当于一个强的排斥势。有时它可以在很大程度上抵消离子实区域的强吸引库仑势( )。于是作用于赝波函数中的赝势远比作用在实际电子波函数的实际库仑势( )弱,因此方程(24)可以只用不太多的平面波的叠加来表达赝波函数中, 以及解出相应的晶体传导电子的能谱( )。当然,从理论上按式(26)严格计算赝势是繁难的。但是在实用中可以选用含有可调节的经验参量的各种简单的近似式来给出。最后由比较计算结果与实测的晶体或原子数据来确定这些经验参量的具体数值。所以,根据方程(24)计算固体能带,实质上是一种半经验方法。它在近二十年来得到很广的应用。
元胞法
E.P.维格纳和F.塞茨1933年提出一个计算固体能带的元胞法。他们把整个晶体划成分属于各个原子的许多“元胞”。每个元胞以阵点为中心由与近邻阵点连线的正交等分面围成,对体心立方的金属钠,元胞形状如图4。因为电子之间有很强的互斥作用,可以设想两个价电子同时处在一个钠原子元胞内的几率极小,所以可以近似地假定价电子所感受的势( )只是该元胞中心的离子实势。而别的元胞的离子实及其余价电子对它的作用势几乎互相抵消。这样,计算因体钠中电子波函数的薛定谔方程就和钠原子问题一样,所不同的是边界条件。在固体中必须保证波函数在元胞边界上平滑连续,并且遵守布洛赫定理。正是这种多边形边界条件很难作具体计算。他们对于比较简单的钠曾近似地把元胞当作球形来计算,但对比较复杂的金属就不能这样作了。
固体的能带
缀加平面波法 J.C.斯莱特1937年提出一个与元胞法类似的缀加平面波法。假设元胞中的势( )可以用一个在中心区的球对称原子势( )和在边角区的平势来近似描述。即在元胞里作一个半径的球,设
(28)
这种形式的势称为丸盒势。因此波函数在球内应是各种角动量的原子波函数的线性组合,而在球外边角区斯莱特把波函数描述为平面波的组合,两者在各球面连续结合并满足布洛赫定理。后来J.科林加、W.科恩和N.罗斯托克提出把各元胞边角区的电子波函数用由各原子散射的球面波的组合来描述,通常简称KKR方法。这些方法都吸收了元胞法的优点,同时又利于处理边界条件。在各种实际固体,特别是包含d电子的过渡金属及其化合物的能带计算中得到广泛的应用。
全国各地天气预报查询

上海市

  • 市辖区
  • 云南省

  • 临沧市
  • 云南省

  • 丽江市
  • 云南省

  • 保山市
  • 云南省

  • 大理白族自治州
  • 云南省

  • 德宏傣族景颇族自治州
  • 云南省

  • 怒江傈僳族自治州
  • 云南省

  • 文山壮族苗族自治州
  • 云南省

  • 昆明市
  • 云南省

  • 昭通市
  • 云南省

  • 普洱市
  • 云南省

  • 曲靖市
  • 云南省

  • 楚雄彝族自治州
  • 云南省

  • 玉溪市
  • 云南省

  • 红河哈尼族彝族自治州
  • 云南省

  • 西双版纳傣族自治州
  • 云南省

  • 迪庆藏族自治州
  • 内蒙古自治区

  • 乌兰察布市
  • 内蒙古自治区

  • 乌海市
  • 内蒙古自治区

  • 兴安盟
  • 内蒙古自治区

  • 包头市
  • 内蒙古自治区

  • 呼伦贝尔市
  • 内蒙古自治区

  • 呼和浩特市
  • 内蒙古自治区

  • 巴彦淖尔市
  • 内蒙古自治区

  • 赤峰市
  • 内蒙古自治区

  • 通辽市
  • 内蒙古自治区

  • 鄂尔多斯市
  • 内蒙古自治区

  • 锡林郭勒盟
  • 内蒙古自治区

  • 阿拉善盟
  • 北京市

  • 市辖区
  • 吉林省

  • 吉林市
  • 吉林省

  • 四平市
  • 吉林省

  • 延边朝鲜族自治州
  • 吉林省

  • 松原市
  • 吉林省

  • 白城市
  • 吉林省

  • 白山市
  • 吉林省

  • 辽源市
  • 吉林省

  • 通化市
  • 吉林省

  • 长春市
  • 四川省

  • 乐山市
  • 四川省

  • 内江市
  • 四川省

  • 凉山彝族自治州
  • 四川省

  • 南充市
  • 四川省

  • 宜宾市
  • 四川省

  • 巴中市
  • 四川省

  • 广元市
  • 四川省

  • 广安市
  • 四川省

  • 德阳市
  • 四川省

  • 成都市
  • 四川省

  • 攀枝花市
  • 四川省

  • 泸州市
  • 四川省

  • 甘孜藏族自治州
  • 四川省

  • 眉山市
  • 四川省

  • 绵阳市
  • 四川省

  • 自贡市
  • 四川省

  • 资阳市
  • 四川省

  • 达州市
  • 四川省

  • 遂宁市
  • 四川省

  • 阿坝藏族羌族自治州
  • 四川省

  • 雅安市
  • 天津市

  • 市辖区
  • 宁夏回族自治区

  • 中卫市
  • 宁夏回族自治区

  • 吴忠市
  • 宁夏回族自治区

  • 固原市
  • 宁夏回族自治区

  • 石嘴山市
  • 宁夏回族自治区

  • 银川市
  • 安徽省

  • 亳州市
  • 安徽省

  • 六安市
  • 安徽省

  • 合肥市
  • 安徽省

  • 安庆市
  • 安徽省

  • 宣城市
  • 安徽省

  • 宿州市
  • 安徽省

  • 池州市
  • 安徽省

  • 淮北市
  • 安徽省

  • 淮南市
  • 安徽省

  • 滁州市
  • 安徽省

  • 芜湖市
  • 安徽省

  • 蚌埠市
  • 安徽省

  • 铜陵市
  • 安徽省

  • 阜阳市
  • 安徽省

  • 马鞍山市
  • 安徽省

  • 黄山市
  • 山东省

  • 东营市
  • 山东省

  • 临沂市
  • 山东省

  • 威海市
  • 山东省

  • 德州市
  • 山东省

  • 日照市
  • 山东省

  • 枣庄市
  • 山东省

  • 泰安市
  • 山东省

  • 济南市
  • 山东省

  • 济宁市
  • 山东省

  • 淄博市
  • 山东省

  • 滨州市
  • 山东省

  • 潍坊市
  • 山东省

  • 烟台市
  • 山东省

  • 聊城市
  • 山东省

  • 菏泽市
  • 山东省

  • 青岛市
  • 山西省

  • 临汾市
  • 山西省

  • 吕梁市
  • 山西省

  • 大同市
  • 山西省

  • 太原市
  • 山西省

  • 忻州市
  • 山西省

  • 晋中市
  • 山西省

  • 晋城市
  • 山西省

  • 朔州市
  • 山西省

  • 运城市
  • 山西省

  • 长治市
  • 山西省

  • 阳泉市
  • 广东省

  • 东莞市
  • 广东省

  • 中山市
  • 广东省

  • 云浮市
  • 广东省

  • 佛山市
  • 广东省

  • 广州市
  • 广东省

  • 惠州市
  • 广东省

  • 揭阳市
  • 广东省

  • 梅州市
  • 广东省

  • 汕头市
  • 广东省

  • 汕尾市
  • 广东省

  • 江门市
  • 广东省

  • 河源市
  • 广东省

  • 深圳市
  • 广东省

  • 清远市
  • 广东省

  • 湛江市
  • 广东省

  • 潮州市
  • 广东省

  • 珠海市
  • 广东省

  • 肇庆市
  • 广东省

  • 茂名市
  • 广东省

  • 阳江市
  • 广东省

  • 韶关市
  • 广西壮族自治区

  • 北海市
  • 广西壮族自治区

  • 南宁市
  • 广西壮族自治区

  • 崇左市
  • 广西壮族自治区

  • 来宾市
  • 广西壮族自治区

  • 柳州市
  • 广西壮族自治区

  • 桂林市
  • 广西壮族自治区

  • 梧州市
  • 广西壮族自治区

  • 河池市
  • 广西壮族自治区

  • 玉林市
  • 广西壮族自治区

  • 百色市
  • 广西壮族自治区

  • 贵港市
  • 广西壮族自治区

  • 贺州市
  • 广西壮族自治区

  • 钦州市
  • 广西壮族自治区

  • 防城港市
  • 新疆维吾尔自治区

  • 乌鲁木齐市
  • 新疆维吾尔自治区

  • 伊犁哈萨克自治州
  • 新疆维吾尔自治区

  • 克孜勒苏柯尔克孜自治州
  • 新疆维吾尔自治区

  • 克拉玛依市
  • 新疆维吾尔自治区

  • 博尔塔拉蒙古自治州
  • 新疆维吾尔自治区

  • 吐鲁番市
  • 新疆维吾尔自治区

  • 和田地区
  • 新疆维吾尔自治区

  • 哈密市
  • 新疆维吾尔自治区

  • 喀什地区
  • 新疆维吾尔自治区

  • 塔城地区
  • 新疆维吾尔自治区

  • 巴音郭楞蒙古自治州
  • 新疆维吾尔自治区

  • 昌吉回族自治州
  • 新疆维吾尔自治区

  • 自治区直辖县级行政区划
  • 新疆维吾尔自治区

  • 阿克苏地区
  • 新疆维吾尔自治区

  • 阿勒泰地区
  • 江苏省

  • 南京市
  • 江苏省

  • 南通市
  • 江苏省

  • 宿迁市
  • 江苏省

  • 常州市
  • 江苏省

  • 徐州市
  • 江苏省

  • 扬州市
  • 江苏省

  • 无锡市
  • 江苏省

  • 泰州市
  • 江苏省

  • 淮安市
  • 江苏省

  • 盐城市
  • 江苏省

  • 苏州市
  • 江苏省

  • 连云港市
  • 江苏省

  • 镇江市
  • 江西省

  • 上饶市
  • 江西省

  • 九江市
  • 江西省

  • 南昌市
  • 江西省

  • 吉安市
  • 江西省

  • 宜春市
  • 江西省

  • 抚州市
  • 江西省

  • 新余市
  • 江西省

  • 景德镇市
  • 江西省

  • 萍乡市
  • 江西省

  • 赣州市
  • 江西省

  • 鹰潭市
  • 河北省

  • 保定市
  • 河北省

  • 唐山市
  • 河北省

  • 廊坊市
  • 河北省

  • 张家口市
  • 河北省

  • 承德市
  • 河北省

  • 沧州市
  • 河北省

  • 石家庄市
  • 河北省

  • 秦皇岛市
  • 河北省

  • 衡水市
  • 河北省

  • 邢台市
  • 河北省

  • 邯郸市
  • 河南省

  • 三门峡市
  • 河南省

  • 信阳市
  • 河南省

  • 南阳市
  • 河南省

  • 周口市
  • 河南省

  • 商丘市
  • 河南省

  • 安阳市
  • 河南省

  • 平顶山市
  • 河南省

  • 开封市
  • 河南省

  • 新乡市
  • 河南省

  • 洛阳市
  • 河南省

  • 漯河市
  • 河南省

  • 濮阳市
  • 河南省

  • 焦作市
  • 河南省

  • 省直辖县级行政区划
  • 河南省

  • 许昌市
  • 河南省

  • 郑州市
  • 河南省

  • 驻马店市
  • 河南省

  • 鹤壁市
  • 浙江省

  • 丽水市
  • 浙江省

  • 台州市
  • 浙江省

  • 嘉兴市
  • 浙江省

  • 宁波市
  • 浙江省

  • 杭州市
  • 浙江省

  • 温州市
  • 浙江省

  • 湖州市
  • 浙江省

  • 绍兴市
  • 浙江省

  • 舟山市
  • 浙江省

  • 衢州市
  • 浙江省

  • 金华市
  • 海南省

  • 三亚市
  • 海南省

  • 三沙市
  • 海南省

  • 儋州市
  • 海南省

  • 海口市
  • 海南省

  • 省直辖县级行政区划
  • 湖北省

  • 十堰市
  • 湖北省

  • 咸宁市
  • 湖北省

  • 孝感市
  • 湖北省

  • 宜昌市
  • 湖北省

  • 恩施土家族苗族自治州
  • 湖北省

  • 武汉市
  • 湖北省

  • 省直辖县级行政区划
  • 湖北省

  • 荆州市
  • 湖北省

  • 荆门市
  • 湖北省

  • 襄阳市
  • 湖北省

  • 鄂州市
  • 湖北省

  • 随州市
  • 湖北省

  • 黄冈市
  • 湖北省

  • 黄石市
  • 湖南省

  • 娄底市
  • 湖南省

  • 岳阳市
  • 湖南省

  • 常德市
  • 湖南省

  • 张家界市
  • 湖南省

  • 怀化市
  • 湖南省

  • 株洲市
  • 湖南省

  • 永州市
  • 湖南省

  • 湘潭市
  • 湖南省

  • 湘西土家族苗族自治州
  • 湖南省

  • 益阳市
  • 湖南省

  • 衡阳市
  • 湖南省

  • 邵阳市
  • 湖南省

  • 郴州市
  • 湖南省

  • 长沙市
  • 甘肃省

  • 临夏回族自治州
  • 甘肃省

  • 兰州市
  • 甘肃省

  • 嘉峪关市
  • 甘肃省

  • 天水市
  • 甘肃省

  • 定西市
  • 甘肃省

  • 平凉市
  • 甘肃省

  • 庆阳市
  • 甘肃省

  • 张掖市
  • 甘肃省

  • 武威市
  • 甘肃省

  • 甘南藏族自治州
  • 甘肃省

  • 白银市
  • 甘肃省

  • 酒泉市
  • 甘肃省

  • 金昌市
  • 甘肃省

  • 陇南市
  • 福建省

  • 三明市
  • 福建省

  • 南平市
  • 福建省

  • 厦门市
  • 福建省

  • 宁德市
  • 福建省

  • 泉州市
  • 福建省

  • 漳州市
  • 福建省

  • 福州市
  • 福建省

  • 莆田市
  • 福建省

  • 龙岩市
  • 西藏自治区

  • 山南市
  • 西藏自治区

  • 拉萨市
  • 西藏自治区

  • 日喀则市
  • 西藏自治区

  • 昌都市
  • 西藏自治区

  • 林芝市
  • 西藏自治区

  • 那曲市
  • 西藏自治区

  • 阿里地区
  • 贵州省

  • 六盘水市
  • 贵州省

  • 安顺市
  • 贵州省

  • 毕节市
  • 贵州省

  • 贵阳市
  • 贵州省

  • 遵义市
  • 贵州省

  • 铜仁市
  • 贵州省

  • 黔东南苗族侗族自治州
  • 贵州省

  • 黔南布依族苗族自治州
  • 贵州省

  • 黔西南布依族苗族自治州
  • 辽宁省

  • 丹东市
  • 辽宁省

  • 大连市
  • 辽宁省

  • 抚顺市
  • 辽宁省

  • 朝阳市
  • 辽宁省

  • 本溪市
  • 辽宁省

  • 沈阳市
  • 辽宁省

  • 盘锦市
  • 辽宁省

  • 营口市
  • 辽宁省

  • 葫芦岛市
  • 辽宁省

  • 辽阳市
  • 辽宁省

  • 铁岭市
  • 辽宁省

  • 锦州市
  • 辽宁省

  • 阜新市
  • 辽宁省

  • 鞍山市
  • 重庆市

  • 重庆市

  • 市辖区
  • 陕西省

  • 咸阳市
  • 陕西省

  • 商洛市
  • 陕西省

  • 安康市
  • 陕西省

  • 宝鸡市
  • 陕西省

  • 延安市
  • 陕西省

  • 榆林市
  • 陕西省

  • 汉中市
  • 陕西省

  • 渭南市
  • 陕西省

  • 西安市
  • 陕西省

  • 铜川市
  • 青海省

  • 果洛藏族自治州
  • 青海省

  • 海东市
  • 青海省

  • 海北藏族自治州
  • 青海省

  • 海南藏族自治州
  • 青海省

  • 海西蒙古族藏族自治州
  • 青海省

  • 玉树藏族自治州
  • 青海省

  • 西宁市
  • 青海省

  • 黄南藏族自治州
  • 黑龙江省

  • 七台河市
  • 黑龙江省

  • 伊春市
  • 黑龙江省

  • 佳木斯市
  • 黑龙江省

  • 双鸭山市
  • 黑龙江省

  • 哈尔滨市
  • 黑龙江省

  • 大兴安岭地区
  • 黑龙江省

  • 大庆市
  • 黑龙江省

  • 牡丹江市
  • 黑龙江省

  • 绥化市
  • 黑龙江省

  • 鸡西市
  • 黑龙江省

  • 鹤岗市
  • 黑龙江省

  • 黑河市
  • 黑龙江省

  • 齐齐哈尔市