数据新闻

新闻报道方式

数据新闻,又叫数据驱动新闻。是指基于数据的抓取、挖掘、统计、分析和可视化呈现的新型新闻报道方式。数据新闻在大数据技术的推动下发生质和量的飞跃。数据新闻是随着数据时代的到来出现的一种新型报道形态,是数据技术对新闻业全面渗透的必然结果,它的出现在一定程度上改变了传统新闻生产流程

产生历程
第一个利用数据进行的新闻报道可追溯到1821年5月5日。卫报历史上第一份报纸的头版新闻:曼彻斯特在校小学生人数及其平均消费统计。这份数据可以从卫报的网站上下载到原版的PDF数据。
数据新闻不是一夜之间就有的。它的萌芽是从计算机辅助报道(computer assisted reporting)开始的。20世纪50年代,美国就有媒体记者利用大型计算机对政府提供的数据库中的信息进行分析,以调查和发现新闻事实。记者在政府机构、企业等所发布的有限数据中,发现新闻选题或者将这些数据作为佐证发现、拓展深度的重要资料。而在如今大数据的背景之下,记者能够获取和利用的数据量相较而言是那时的无数倍。
数据新闻有别于精确新闻数字新闻。精确新闻由美国学者、新闻记者菲利普·迈耶在20世纪60年代提出,指记者在采访新闻时运用调查、实验和内容分析社会科学研究方法来收集资料、查证事实,从而报道新闻。这类新闻报道20世纪70年代风行于美国新闻界。80年代,中国新闻界开始运用这种新闻报道方法。它的特点是用精确的具体数据分析新闻事件,以避免主观的、人为的错误。它侧重于微观的具体调查、实验和内容分析。而数字新闻,则指以数字、公式、字母等静态形式来辅助文字报道。所说大数据新闻,显现的是对大数据的挖掘与处理的结果,可以通过复杂的交互式、动态化的图片和视频来呈现这类新闻。
功能与优势
在大数据新闻制作上已经积累了经验的国际媒体有《卫报》《纽约时报》《华盛顿邮报》等,但它们也处于探索阶段。通过对国内外代表性媒体的大数据新闻实践进行研究,可以总结出大数据新闻的四个功能,即描述、判断、预测、信息定制
新闻叙事
卫报》网页2012年1月5日发布了一个有关“阿拉伯之春”的大数据新闻报道。报道利用动态图表,以时间轴为主线描述了自2010年12月一突尼斯男子自焚至2011年12月的一年间,17个阿拉伯国家发生的一场政治运动。网民可以通过这个四维动态的报道,清楚地从宏观到微观,全面了解阿拉伯之春在不同国家的不同表现形式。图表上方设置了时间的推拉按钮,网民推拉到自己想观看的时间点,可以清楚地看到相同时间点上不同国家发生的相关事件。画面的下方是各个国家的标签,网民也可以通过国家标记,来关注某个具体国家在纵向时间轴上的政治演变进程。不同的政治事件用不同颜色来标示:绿色为群众性抗议活动,浅蓝色为国际上的相关反应,黄色为政治事件,红色为政权更替。如果网民想了解某个事件的具体内容,点击不同颜色的标示,随即获取深度报道的链接。这种新闻报道方式,将涉及十几个国家、时间跨度长达一年的复杂的“阿拉伯之春”,以明晰的动态方式呈现出来,纯文字报道难以达到这样的传播效果
大数据新闻还能够描述那些看不见的短期过程,比如流言如何在社交网络上传播。《卫报》通过追踪分析260万份推特内容,利用可视化动态图表描述了从流言开始传播到辟谣结束的整个过程。它也是以时间为轴,利用圆圈大小、颜色变化来描述整个过程,绿色的圈代表散布流言的推文,红色的圈代表更正这个流言的推文,灰色的是中立的评价推文,黄色的是对流言持怀疑态度的推文。圈的大小代表了推文的影响程度,圈越大影响程度越大。如果想了解具体的内容,点到哪个圈,屏幕旁边即刻呈现这个圈所代表的推文的发布者、发布日期、转推人数等等信息。通过这个动态的演进过程,人们可以清楚地看到,社交网络并不像一般想象的那样,是一味扩散虚假消息的场所。其实在假消息出现不久,社交网络上各种辟谣的消息就已经出现了。
从这两个例子可以看出,大数据新闻的报道方式能够在宏观上对某个事件看得更加清楚与全面,事件复杂的演进过程以及这个过程中的各个方面,都能描述得直观且有趣。
事实判断
2011年8月,一个黑人穆斯林男子乘出租车在伦敦街头遭到警方拦截,双方发生枪战,该男子当街死亡。两天后,约300人聚集在伦敦市中心的警察局进行抗议,后来演变成持续多天的骚乱事件,抗议者引燃了汽车、商店和公交车。当天夜里,伦敦其他地区也发生了类似袭警、抢劫、纵火等事件。一些媒体评论指出,这与贫富差距有关。英国首相卡梅伦接受采访时,声称骚乱事件与贫富差距无关。
英国《卫报》记者利用大数据的分析结果,做了关于这一事件的系列报道,其中的一个报道主题,便是骚乱与贫困有没有关联。记者利用谷歌融合图表,在伦敦地区地图上标记出骚乱分子的居住地信息(黄色点)、实际发生骚乱的地点(灰色点),以及贫困地区分布(越偏红色表示越贫穷)。根据这张伦敦市中心的图,网民可以将图扩展到整个大伦敦地区来看,也可以聚焦到具体的街区放大来看,观察每个被标记的骚乱点的人流从哪里来,到哪儿去,从而清楚地看到贫苦与骚乱之间存在的某种关联。这种关系的表达,比起单纯的文字报道来,表现清晰,说服力强。
预测走向
2013年“十一”长假期间,九寨沟发生游客大量滞留现象并引发群体性事件。如果新闻媒体或旅游当局能够在此前运用中国的局部大数据进行预测性报道,完全可以避免这样的群体性事件发生。因为传媒可以根据这方面的大数据,提前报道在哪个具体时间段内,有多少人从哪些地方前往九寨沟,其中男人、女人、老人、儿童各有多少等等。
这只是一个小例子,大数据能够预测社会和人们日常生活中的各个方面。通过挖掘大数据,传媒在技术上可以制作出可视化、交互式的图表,告知很多事项。微观的如流行疾病来袭、交通拥堵情况;宏观的如经济指数变动、某种社会危机的来临等等。百度开辟了“百度预测”网页,以“大数据,知天下”的口号推出,预测的产品有高考、世界杯、电影票房等等。它们后期准备上线的产品扩展到了更广的领域,比如金融预测、房地产预测等等。
信息定制
利用大数据的分析结果,满足网民的信息个性化要求,是国外媒体的最新尝试。例如Five thirty eight数据博客,在2014年5月23日新辟读者来信专栏“亲爱的莫娜”。其第一期开篇语阐释的目的是:“我开这个专栏是为了帮助读者回答一些生活中重要的或者严肃的问题,比如我是不是很正常、我处在世界的哪个地位层面等等,目的不是为了给读者答疑解惑,不是告诉读者应该做什么和不应该做什么。恰恰相反,我提供数据来解释、描述你的经历。”
综观这个专栏,读者的提问五花八门,比较严肃的如:“美国有多少人从来没有喝过一滴酒?”“美国有多少男性空乘人员?”也有比较私人的如:“我该多久换一次袜子?”“婚前同居会不会导致离婚”等等。专栏作者利用美国范围内的大数据,即刻将分析结果告知当事人,但避免给出指导性意见,仅告知各种数据的分析结果,让网民自己依照分析结果来处理自己面临的问题。这个专栏与传统的纸媒读者来信专栏不同,不是通过星座、血型、生辰八字或伪装成阅历丰富的专家,来提供些心灵鸡汤式的回答,只用数据来说话。
这种尝试在媒体中并不少见。2011年,BBC广播公司曾根据2012年政府的财政预算联合毕马威会计师事务所做了一个预算计算器,用户只需要输入一些日常信息,例如买多少啤酒,用多少汽油等,就能够算出新的预算会让你付多少税,2012年生活会不会更好。
根据用户需求提供个性化的大数据服务,是未来的发展趋势。这些报道有一个共性,媒体都致力于以用户的需求为中心,利用大数据诠释宏观社会现象对用户的影响,或者回答用户困惑的问题。媒体可以精准定位,经过后台计算,按照用户的接收习惯、工作习惯和生活习惯将服务推送到用户眼前。
解决对策
海量数据收集与整合
媒体工作者需多渠道的收集数据。从公开的数据库或者是政府部门、企业、机构中获取数据,从这些海量信息中判断和选择有表现力的数据。当媒体工作者获取数据之后,便开始处理和整合数据。将与新闻报道无关的数据筛选、过滤后,剩下有用的数据进行整合汇编,形成新的报道内容。以“百度人口迁徙”为例,百度利用软件,将人们购票的时间、地点、性别、年龄以及出发站、终点站进行统计,形成数据库,不仅可供新闻工作者使用,政府和企业等也可利用这些数据,创造出不同的价值。 由此可见,海量数据的收集与整合对于数据新闻来说是一大挑战。新闻工作者通过数据的挖掘和分析,寻找出有价值的相关性,继而增加对相关事件发展趋势的预测性,新闻和数据相结合创作出精确和深度报道,成为大数据时代的新闻业务发展方向。
凸显把关人的重要性
截止2014年中国的网民规模高达6.52亿,在信息碎片化的时代,相当多的网民在网上浏览新闻,因此数据新闻的把关尤为重要。数据新闻需要大量的数据、数据分析处理,不仅仅是要有技术水平,更需要一双慧眼,分得清“真数据”和“假数据”,而且还要选择重要的数据和信息进行报道,为受众提供更细致、精确的新闻,又快又准的报道新闻,数据新闻的把关在数据时代更为重要。
提高新闻工作者媒体素养
数据新闻学是一门交叉的学科,数据新闻的产生给传统的新闻工作者提出了挑战,传统的新闻创作理念和方式,要求新闻工作者具备采写编评等基本专业技能,但已无法满足大数据时代下数据新闻的创作。因此,对于当前的新闻工作者应具备以下媒体素养:
a.熟练运用计算机能力。在如今信息爆炸的时代,互联网的地位不容忽视。互联网时代,尤其是社交网络、电子商务与移动通信人类社会带入了一个以“PB”(1024TB)为单位的结构与非结构数据信息的新时代。大量的数据和信息摆在新闻工作者面前,传统的计算机无法处理大量的、无规律的数据,需要云计算进行分析、处理、统计,因此,对于当今的新闻工作者提出了更高的要求,必须熟练运用计算机,以便处理大量的数据和信息。
b.分析处理数据能力。数据新闻与传统的文字图片新闻不一样,数据新闻需要大量的数据,新闻工作者可以通过数据发现问题、提出问题,也可以先有了问题之后,再去收集相关的数据。而拥有大量数据后,必须对其进行分析和处理,将不需要或不相关的数据过滤掉,剩下有价值的数据加以分析整合,供新闻编辑使用。德勤在美国华盛顿特区的研发创新团队招聘数据记者,其中最重要的要求就是要具备分析数据的能力,由此可见,数据新闻记者必须具备较强的数据分析和处理的能力,才能胜任此工作。
c.可视化平面设计能力。数据新闻的可视化表达为新闻行业注入了一股新鲜的血液,让数据新闻充满希望与活力。数据新闻的可视化图片将不同的时间和空间联系在一起,将繁杂的数据简单化,便于受众理解,更有利于受众参与其中,满足不同受众的各方面需求。数据新闻的可视化是其一大特点,因此对于新闻工作者来说,应熟练掌握可视化技术,学会识图制图以及各种表格的制作。
数据新闻特征
全国各地天气预报查询

上海市

  • 市辖区
  • 云南省

  • 临沧市
  • 云南省

  • 丽江市
  • 云南省

  • 保山市
  • 云南省

  • 大理白族自治州
  • 云南省

  • 德宏傣族景颇族自治州
  • 云南省

  • 怒江傈僳族自治州
  • 云南省

  • 文山壮族苗族自治州
  • 云南省

  • 昆明市
  • 云南省

  • 昭通市
  • 云南省

  • 普洱市
  • 云南省

  • 曲靖市
  • 云南省

  • 楚雄彝族自治州
  • 云南省

  • 玉溪市
  • 云南省

  • 红河哈尼族彝族自治州
  • 云南省

  • 西双版纳傣族自治州
  • 云南省

  • 迪庆藏族自治州
  • 内蒙古自治区

  • 乌兰察布市
  • 内蒙古自治区

  • 乌海市
  • 内蒙古自治区

  • 兴安盟
  • 内蒙古自治区

  • 包头市
  • 内蒙古自治区

  • 呼伦贝尔市
  • 内蒙古自治区

  • 呼和浩特市
  • 内蒙古自治区

  • 巴彦淖尔市
  • 内蒙古自治区

  • 赤峰市
  • 内蒙古自治区

  • 通辽市
  • 内蒙古自治区

  • 鄂尔多斯市
  • 内蒙古自治区

  • 锡林郭勒盟
  • 内蒙古自治区

  • 阿拉善盟
  • 北京市

  • 市辖区
  • 吉林省

  • 吉林市
  • 吉林省

  • 四平市
  • 吉林省

  • 延边朝鲜族自治州
  • 吉林省

  • 松原市
  • 吉林省

  • 白城市
  • 吉林省

  • 白山市
  • 吉林省

  • 辽源市
  • 吉林省

  • 通化市
  • 吉林省

  • 长春市
  • 四川省

  • 乐山市
  • 四川省

  • 内江市
  • 四川省

  • 凉山彝族自治州
  • 四川省

  • 南充市
  • 四川省

  • 宜宾市
  • 四川省

  • 巴中市
  • 四川省

  • 广元市
  • 四川省

  • 广安市
  • 四川省

  • 德阳市
  • 四川省

  • 成都市
  • 四川省

  • 攀枝花市
  • 四川省

  • 泸州市
  • 四川省

  • 甘孜藏族自治州
  • 四川省

  • 眉山市
  • 四川省

  • 绵阳市
  • 四川省

  • 自贡市
  • 四川省

  • 资阳市
  • 四川省

  • 达州市
  • 四川省

  • 遂宁市
  • 四川省

  • 阿坝藏族羌族自治州
  • 四川省

  • 雅安市
  • 天津市

  • 市辖区
  • 宁夏回族自治区

  • 中卫市
  • 宁夏回族自治区

  • 吴忠市
  • 宁夏回族自治区

  • 固原市
  • 宁夏回族自治区

  • 石嘴山市
  • 宁夏回族自治区

  • 银川市
  • 安徽省

  • 亳州市
  • 安徽省

  • 六安市
  • 安徽省

  • 合肥市
  • 安徽省

  • 安庆市
  • 安徽省

  • 宣城市
  • 安徽省

  • 宿州市
  • 安徽省

  • 池州市
  • 安徽省

  • 淮北市
  • 安徽省

  • 淮南市
  • 安徽省

  • 滁州市
  • 安徽省

  • 芜湖市
  • 安徽省

  • 蚌埠市
  • 安徽省

  • 铜陵市
  • 安徽省

  • 阜阳市
  • 安徽省

  • 马鞍山市
  • 安徽省

  • 黄山市
  • 山东省

  • 东营市
  • 山东省

  • 临沂市
  • 山东省

  • 威海市
  • 山东省

  • 德州市
  • 山东省

  • 日照市
  • 山东省

  • 枣庄市
  • 山东省

  • 泰安市
  • 山东省

  • 济南市
  • 山东省

  • 济宁市
  • 山东省

  • 淄博市
  • 山东省

  • 滨州市
  • 山东省

  • 潍坊市
  • 山东省

  • 烟台市
  • 山东省

  • 聊城市
  • 山东省

  • 菏泽市
  • 山东省

  • 青岛市
  • 山西省

  • 临汾市
  • 山西省

  • 吕梁市
  • 山西省

  • 大同市
  • 山西省

  • 太原市
  • 山西省

  • 忻州市
  • 山西省

  • 晋中市
  • 山西省

  • 晋城市
  • 山西省

  • 朔州市
  • 山西省

  • 运城市
  • 山西省

  • 长治市
  • 山西省

  • 阳泉市
  • 广东省

  • 东莞市
  • 广东省

  • 中山市
  • 广东省

  • 云浮市
  • 广东省

  • 佛山市
  • 广东省

  • 广州市
  • 广东省

  • 惠州市
  • 广东省

  • 揭阳市
  • 广东省

  • 梅州市
  • 广东省

  • 汕头市
  • 广东省

  • 汕尾市
  • 广东省

  • 江门市
  • 广东省

  • 河源市
  • 广东省

  • 深圳市
  • 广东省

  • 清远市
  • 广东省

  • 湛江市
  • 广东省

  • 潮州市
  • 广东省

  • 珠海市
  • 广东省

  • 肇庆市
  • 广东省

  • 茂名市
  • 广东省

  • 阳江市
  • 广东省

  • 韶关市
  • 广西壮族自治区

  • 北海市
  • 广西壮族自治区

  • 南宁市
  • 广西壮族自治区

  • 崇左市
  • 广西壮族自治区

  • 来宾市
  • 广西壮族自治区

  • 柳州市
  • 广西壮族自治区

  • 桂林市
  • 广西壮族自治区

  • 梧州市
  • 广西壮族自治区

  • 河池市
  • 广西壮族自治区

  • 玉林市
  • 广西壮族自治区

  • 百色市
  • 广西壮族自治区

  • 贵港市
  • 广西壮族自治区

  • 贺州市
  • 广西壮族自治区

  • 钦州市
  • 广西壮族自治区

  • 防城港市
  • 新疆维吾尔自治区

  • 乌鲁木齐市
  • 新疆维吾尔自治区

  • 伊犁哈萨克自治州
  • 新疆维吾尔自治区

  • 克孜勒苏柯尔克孜自治州
  • 新疆维吾尔自治区

  • 克拉玛依市
  • 新疆维吾尔自治区

  • 博尔塔拉蒙古自治州
  • 新疆维吾尔自治区

  • 吐鲁番市
  • 新疆维吾尔自治区

  • 和田地区
  • 新疆维吾尔自治区

  • 哈密市
  • 新疆维吾尔自治区

  • 喀什地区
  • 新疆维吾尔自治区

  • 塔城地区
  • 新疆维吾尔自治区

  • 巴音郭楞蒙古自治州
  • 新疆维吾尔自治区

  • 昌吉回族自治州
  • 新疆维吾尔自治区

  • 自治区直辖县级行政区划
  • 新疆维吾尔自治区

  • 阿克苏地区
  • 新疆维吾尔自治区

  • 阿勒泰地区
  • 江苏省

  • 南京市
  • 江苏省

  • 南通市
  • 江苏省

  • 宿迁市
  • 江苏省

  • 常州市
  • 江苏省

  • 徐州市
  • 江苏省

  • 扬州市
  • 江苏省

  • 无锡市
  • 江苏省

  • 泰州市
  • 江苏省

  • 淮安市
  • 江苏省

  • 盐城市
  • 江苏省

  • 苏州市
  • 江苏省

  • 连云港市
  • 江苏省

  • 镇江市
  • 江西省

  • 上饶市
  • 江西省

  • 九江市
  • 江西省

  • 南昌市
  • 江西省

  • 吉安市
  • 江西省

  • 宜春市
  • 江西省

  • 抚州市
  • 江西省

  • 新余市
  • 江西省

  • 景德镇市
  • 江西省

  • 萍乡市
  • 江西省

  • 赣州市
  • 江西省

  • 鹰潭市
  • 河北省

  • 保定市
  • 河北省

  • 唐山市
  • 河北省

  • 廊坊市
  • 河北省

  • 张家口市
  • 河北省

  • 承德市
  • 河北省

  • 沧州市
  • 河北省

  • 石家庄市
  • 河北省

  • 秦皇岛市
  • 河北省

  • 衡水市
  • 河北省

  • 邢台市
  • 河北省

  • 邯郸市
  • 河南省

  • 三门峡市
  • 河南省

  • 信阳市
  • 河南省

  • 南阳市
  • 河南省

  • 周口市
  • 河南省

  • 商丘市
  • 河南省

  • 安阳市
  • 河南省

  • 平顶山市
  • 河南省

  • 开封市
  • 河南省

  • 新乡市
  • 河南省

  • 洛阳市
  • 河南省

  • 漯河市
  • 河南省

  • 濮阳市
  • 河南省

  • 焦作市
  • 河南省

  • 省直辖县级行政区划
  • 河南省

  • 许昌市
  • 河南省

  • 郑州市
  • 河南省

  • 驻马店市
  • 河南省

  • 鹤壁市
  • 浙江省

  • 丽水市
  • 浙江省

  • 台州市
  • 浙江省

  • 嘉兴市
  • 浙江省

  • 宁波市
  • 浙江省

  • 杭州市
  • 浙江省

  • 温州市
  • 浙江省

  • 湖州市
  • 浙江省

  • 绍兴市
  • 浙江省

  • 舟山市
  • 浙江省

  • 衢州市
  • 浙江省

  • 金华市
  • 海南省

  • 三亚市
  • 海南省

  • 三沙市
  • 海南省

  • 儋州市
  • 海南省

  • 海口市
  • 海南省

  • 省直辖县级行政区划
  • 湖北省

  • 十堰市
  • 湖北省

  • 咸宁市
  • 湖北省

  • 孝感市
  • 湖北省

  • 宜昌市
  • 湖北省

  • 恩施土家族苗族自治州
  • 湖北省

  • 武汉市
  • 湖北省

  • 省直辖县级行政区划
  • 湖北省

  • 荆州市
  • 湖北省

  • 荆门市
  • 湖北省

  • 襄阳市
  • 湖北省

  • 鄂州市
  • 湖北省

  • 随州市
  • 湖北省

  • 黄冈市
  • 湖北省

  • 黄石市
  • 湖南省

  • 娄底市
  • 湖南省

  • 岳阳市
  • 湖南省

  • 常德市
  • 湖南省

  • 张家界市
  • 湖南省

  • 怀化市
  • 湖南省

  • 株洲市
  • 湖南省

  • 永州市
  • 湖南省

  • 湘潭市
  • 湖南省

  • 湘西土家族苗族自治州
  • 湖南省

  • 益阳市
  • 湖南省

  • 衡阳市
  • 湖南省

  • 邵阳市
  • 湖南省

  • 郴州市
  • 湖南省

  • 长沙市
  • 甘肃省

  • 临夏回族自治州
  • 甘肃省

  • 兰州市
  • 甘肃省

  • 嘉峪关市
  • 甘肃省

  • 天水市
  • 甘肃省

  • 定西市
  • 甘肃省

  • 平凉市
  • 甘肃省

  • 庆阳市
  • 甘肃省

  • 张掖市
  • 甘肃省

  • 武威市
  • 甘肃省

  • 甘南藏族自治州
  • 甘肃省

  • 白银市
  • 甘肃省

  • 酒泉市
  • 甘肃省

  • 金昌市
  • 甘肃省

  • 陇南市
  • 福建省

  • 三明市
  • 福建省

  • 南平市
  • 福建省

  • 厦门市
  • 福建省

  • 宁德市
  • 福建省

  • 泉州市
  • 福建省

  • 漳州市
  • 福建省

  • 福州市
  • 福建省

  • 莆田市
  • 福建省

  • 龙岩市
  • 西藏自治区

  • 山南市
  • 西藏自治区

  • 拉萨市
  • 西藏自治区

  • 日喀则市
  • 西藏自治区

  • 昌都市
  • 西藏自治区

  • 林芝市
  • 西藏自治区

  • 那曲市
  • 西藏自治区

  • 阿里地区
  • 贵州省

  • 六盘水市
  • 贵州省

  • 安顺市
  • 贵州省

  • 毕节市
  • 贵州省

  • 贵阳市
  • 贵州省

  • 遵义市
  • 贵州省

  • 铜仁市
  • 贵州省

  • 黔东南苗族侗族自治州
  • 贵州省

  • 黔南布依族苗族自治州
  • 贵州省

  • 黔西南布依族苗族自治州
  • 辽宁省

  • 丹东市
  • 辽宁省

  • 大连市
  • 辽宁省

  • 抚顺市
  • 辽宁省

  • 朝阳市
  • 辽宁省

  • 本溪市
  • 辽宁省

  • 沈阳市
  • 辽宁省

  • 盘锦市
  • 辽宁省

  • 营口市
  • 辽宁省

  • 葫芦岛市
  • 辽宁省

  • 辽阳市
  • 辽宁省

  • 铁岭市
  • 辽宁省

  • 锦州市
  • 辽宁省

  • 阜新市
  • 辽宁省

  • 鞍山市
  • 重庆市

  • 重庆市

  • 市辖区
  • 陕西省

  • 咸阳市
  • 陕西省

  • 商洛市
  • 陕西省

  • 安康市
  • 陕西省

  • 宝鸡市
  • 陕西省

  • 延安市
  • 陕西省

  • 榆林市
  • 陕西省

  • 汉中市
  • 陕西省

  • 渭南市
  • 陕西省

  • 西安市
  • 陕西省

  • 铜川市
  • 青海省

  • 果洛藏族自治州
  • 青海省

  • 海东市
  • 青海省

  • 海北藏族自治州
  • 青海省

  • 海南藏族自治州
  • 青海省

  • 海西蒙古族藏族自治州
  • 青海省

  • 玉树藏族自治州
  • 青海省

  • 西宁市
  • 青海省

  • 黄南藏族自治州
  • 黑龙江省

  • 七台河市
  • 黑龙江省

  • 伊春市
  • 黑龙江省

  • 佳木斯市
  • 黑龙江省

  • 双鸭山市
  • 黑龙江省

  • 哈尔滨市
  • 黑龙江省

  • 大兴安岭地区
  • 黑龙江省

  • 大庆市
  • 黑龙江省

  • 牡丹江市
  • 黑龙江省

  • 绥化市
  • 黑龙江省

  • 鸡西市
  • 黑龙江省

  • 鹤岗市
  • 黑龙江省

  • 黑河市
  • 黑龙江省

  • 齐齐哈尔市