路径分析

数据挖掘方法

路径分析是常用的数据挖掘方法之一, 是一种找寻频繁访问路径的方法,它通过对Web服务器的日志文件中客户访问站点访问次数的分析,挖掘出频繁访问路径。

简介
LBS不仅需要能确定目标的地理位置,还需要能实现对地理环境的有效分析。网络分析是地理环境分析中的一个重要技术,包括最短路径分析、网络流分析等内容。在网络分析中,最短路径分析是最基本的,也是最关键的技术,一直是计算机科学、运筹学、交通工程学、地理信息学等学科的一个研究热点。如今,最短路径分析算法已经非常成熟,如以Dijkstra算法为代表的宽度搜索方法、动态规划方法等。
一种统计程序,通过分析变量之间假设的因果效应,来测试研究人员提出的关于一套观察或者呈现变量之间因果关系的理论。由美国遗传学家S.赖特于1921年首创,后被引入社会学的研究中,并发展成为社会学的主要分析方法之一。
路径分析的主要目的是检验一个假想的因果模型的准确和可靠程度,测量变量间因果关系的强弱,回答下述问题:①模型中两变量xj与xi间是否存在相关关系;②若存在相关关系,则进一步研究两者间是否有因果关系;③若xj影响xi,那么xj是直接影响xi,还是通过中介变量间接影响或两种情况都有;④直接影响与间接影响两者大小如何。
内容
路径分析包含了两个基本内容:一个是路径的搜索;另一个是距离的计算。路径搜索的算法与连通分析是一致的,通过邻接关系的传递来实现路径搜索。路径的长度(距离)以积聚距离(accumulated distance)来计算。距离的计算方法为:将栅格路径视做由一系列路径段(path segments)组成,在进行路径搜索的同时计算每个路径段的长度并累计起来,表示从起点到当前栅格单元的距离。这里路径段指的是在一定的精度范围内可以以直线段模拟和计算的栅格单元集合。
核心
路径分析是GIS中最基本的功能,其核心是对最佳路径和最短路径的求解。
①最佳路径
从网络模型的角度看,最佳路径求解就是在指定网络的两结点间,找一条阻碍强度最小的路径。最佳路径的产生基于网线和结点转角(如果模型中结点具有转角数据的话)的阻碍强度。
例如,如果要找最短的路径,阻碍强度要预先设定为通过网线或在结点转弯处所花费的时间;如果要找费用最小的路径,阻碍强度就应该是费用。当网线在顺逆两个方向上的阻碍强度都是该网线的长度,而结点无转角数据或转角数据都是0时,最佳路径就成为最短路径。
在某些情况下,用户可能要求系统能一次求出所有结点间的最佳路径,或者要了解两结点间的第二、第三乃至第X条最佳路径。
②最佳遍历方案
另一种路径分析功能是最佳遍历方案的求解。
网线最佳遍历方案求解是给定一个网线集合和一个结点,求解最佳路径,使之由指定结点出发至少经过每条网线一次而回到起始结点。
结点最佳遍历方案求解则是给定一个起始结点、一个终止结点和若干中间结点,求解最佳路径,使之由起点出发遍历全部中间结点而达到终点。
类型
(1)静态求最佳路径:由用户确定权值关系后,给定每条弧段的属性,当求最佳路径时,读出路径的相关属性,求最佳路径。
(2)N条最佳路径分析:确定起点、终点,求代价较小的几条路径。在实际应用中仅求出最佳路径并不能满足要求,可能NN某种因素不走最佳路径,而走近似最佳路径。
(3)最短路径:确定起点、终点和所要经过的中间连线,求最短路径。
(4)动态最佳路径分析:实际网络分析中权值是随着权值关系式变化的,而且可能会临时出现一些障碍点,所以往往需要动态地计算最佳路径。
最优路径分析模型
最优路径分析是地理网络分析中最常见的基本功能,也是LBS需要具备的功能。地理网络中的最优路径是指在地理网络中满足某些优化条件的一条路,包括距离最短或最长、通行时间最短、运输费用最低、行使最安全、容量最大等。
最优路径分析方法
1.道路预处理
进行道路数据录入时,往往在道路的交叉接合处出现重叠或相离的情况,不宜计算机处理。因此,需要对原始数据进行预处理,使道路接合符合处理要求。进行预处理时,取每条线段的首末节点坐标为圆心,以给定的阈值为半径作圆域,判断其他线段是否与圆域相交,如果相交,则相交的各个线对象共用一个节点号。
2.道路自动断链
对道路进行预处理之后即可获得比较理想的数据,在此基础上再进行道路的自动断链。步骤如下:
(1)取出所有线段记录数n,从第一条线段开始;
(2)找出所有与之相交的线段并求出交点数m;
(3)将m个交点和该线段节点在判断无重合后进行排序;
(4)根据交点数量,该线段被分成m+1段;
(5)第一段在原始位置不变,后m段从记录尾开始递增;
(6)重复(2)~(5),循环至n。
3.节点匹配
拓扑关系需使用统一的节点。节点匹配方法是按记录顺序将所有线段的始末点加上相应节点号,坐标相同的节点共用一个节点号,与前面所有线段首末点都不相同的节点按自然顺序递增1。
4.迪杰克斯特拉(Dijkstra)算法
经典的图论与计算机算法的有效结合,使得新的最短路径算法不断涌现。目前提出的最短路径算法中,使用最多、计算速度比较快,又比较适合于计算两点之间的最短路径问题的数学模型就是经典的Dijkstra算法
该算法是典型的单源最短路径算法,由Dijkstra EW于1959年提出,适用于所有弧的权均为非负的情况,主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。该算法的基本思想是:认为两节点间最佳路径要么是直接相连,要么是通过其他已找到的与起始点的最佳路径的节点中转点。定出起始点P0后,定能找出一个与之直接相连且路径长度最短的节点,设为P1,P0到P1就是它们间的最佳路径。
Dijkstra算法的基本流程如下:首先将网络中所有节点分成两组,一组包含了已经确定属于最短路径中点的集合,记为S(该集合在初始状态只有一个源节点,以后每求得一条最短路径,就将其加入到集合S中,直到全部顶点都加入到S中,算法就结束了);另一组是尚未确定最短路径的节点的集合,记为V,按照最短路径长度递增的次序依次把第二组的顶点加入到第一组中,在加入的过程中总保持从源点到S中各顶点的最短路径长度不大于从源点到V中任何顶点的最短路径长度。此外,每个顶点对应一个距离,S中的顶点距离就是从源点到此顶点的最短路径长度,V中的顶点距离是从源点到此顶点只包括S中的顶点为中间顶点的当前最短路径长度。
步骤
路径分析的主要步骤是:①选择变量和建立因果关系模型。这是路径分析的前提。研究人员多用路径图形象地将变量的层次,变量间因果关系的路径、类型、结构等,表述为所建立的因果模型。下图是5个变量因果关系的路径。 图中带箭头的直线“→”连接的是具有因果关系的两个变量,箭头的方向与因果的方向相同;当两变量只有相关关系而无因果关系时,用弧线双向箭头表示。图中变量分为:a.外生变量。因果模型中只扮演因,从不扮演果的变量,是不受模型中其他变量影响的独立变量,如x1与 x2。b.内生变量。模型中既可为因又可为果的变量,其变化受模型中其他变量的影响,如x3、x4与x5。c.残差变量。来自因果模型之外的影响因变量的所有变量的总称,如e3、e4、e5。
若变量间的关系是线性可加的,则图中的因果模型可用3个标准化多元线性回归方程表示:
 pij 称为由xj到xi的路径系数,它表示xj与xi间因果关系的强弱,即当其他变量均保持不变时,变量xj对变量xi的直接作用力的大小。pie称为残差路径系数,它表示所有自变量所不能解释的因变量的变异部分,其大小对于因果模型的确定有重要作用。
②检验假设。路径分析要以下列假定为前提:a.变量间的因果关系是单向的,不具有反馈性,又称递归模型;b.变量间具有线性可加关系;c.变量具有等距以上测量尺度;d.所有误差均为随机的,外生变量无测量误差;e.所有内生变量的误差变量间及与内生变量有因果关系的所有自变量间无相关。当某些假定,如递归性或变量的测量尺度不满足时,要做适当的处理才能应用路径分析。
③估计参数。首先计算路径系数与残差路径系数,然后计算两变量间相关系数rji。此外,要计算两变量间总因果作用力,包括变量xj对xi的直接作用力、xj经中间变量而对xi的间接作用力两部分。例如,上图的因果模型中,x1对x5的总作用力由直接作用力p51和间接作用力构成。这两部分作用力的大小可由两变量间的相关系数rij的分解得到。最后还要计算决定系数嵀,它表示所有作用于xi的自变量所能解释xi变异量的比例。公式是:  ④评估因果模型。评估的主要指标是:a. 嵀,若嵀太小,则要考虑是否需要增加新的自变量,以保证模型精度。b,一个理想的因果模应当很小,当它很大时,则有必要重新估计此因果路径也可由公计算。c.进行F检验。 式中Q为残差平方和,U为回归平方和,N为样本数,K为变量数,检验不显著时要修改模型。 路径分析是多元回归分析的延伸,与后者不同的是:①路径分析间的因果关系是多层次的,因果变量之间加入了中介变量,使路径分析模型较一般回归模型对于现实因果关系的描述更丰富有力。②路径分析不是运用一个而是一组回归方程,在分析时更应注意保证各方程式所含意义的一致性。
全国各地天气预报查询

上海市

  • 市辖区
  • 云南省

  • 临沧市
  • 云南省

  • 丽江市
  • 云南省

  • 保山市
  • 云南省

  • 大理白族自治州
  • 云南省

  • 德宏傣族景颇族自治州
  • 云南省

  • 怒江傈僳族自治州
  • 云南省

  • 文山壮族苗族自治州
  • 云南省

  • 昆明市
  • 云南省

  • 昭通市
  • 云南省

  • 普洱市
  • 云南省

  • 曲靖市
  • 云南省

  • 楚雄彝族自治州
  • 云南省

  • 玉溪市
  • 云南省

  • 红河哈尼族彝族自治州
  • 云南省

  • 西双版纳傣族自治州
  • 云南省

  • 迪庆藏族自治州
  • 内蒙古自治区

  • 乌兰察布市
  • 内蒙古自治区

  • 乌海市
  • 内蒙古自治区

  • 兴安盟
  • 内蒙古自治区

  • 包头市
  • 内蒙古自治区

  • 呼伦贝尔市
  • 内蒙古自治区

  • 呼和浩特市
  • 内蒙古自治区

  • 巴彦淖尔市
  • 内蒙古自治区

  • 赤峰市
  • 内蒙古自治区

  • 通辽市
  • 内蒙古自治区

  • 鄂尔多斯市
  • 内蒙古自治区

  • 锡林郭勒盟
  • 内蒙古自治区

  • 阿拉善盟
  • 北京市

  • 市辖区
  • 吉林省

  • 吉林市
  • 吉林省

  • 四平市
  • 吉林省

  • 延边朝鲜族自治州
  • 吉林省

  • 松原市
  • 吉林省

  • 白城市
  • 吉林省

  • 白山市
  • 吉林省

  • 辽源市
  • 吉林省

  • 通化市
  • 吉林省

  • 长春市
  • 四川省

  • 乐山市
  • 四川省

  • 内江市
  • 四川省

  • 凉山彝族自治州
  • 四川省

  • 南充市
  • 四川省

  • 宜宾市
  • 四川省

  • 巴中市
  • 四川省

  • 广元市
  • 四川省

  • 广安市
  • 四川省

  • 德阳市
  • 四川省

  • 成都市
  • 四川省

  • 攀枝花市
  • 四川省

  • 泸州市
  • 四川省

  • 甘孜藏族自治州
  • 四川省

  • 眉山市
  • 四川省

  • 绵阳市
  • 四川省

  • 自贡市
  • 四川省

  • 资阳市
  • 四川省

  • 达州市
  • 四川省

  • 遂宁市
  • 四川省

  • 阿坝藏族羌族自治州
  • 四川省

  • 雅安市
  • 天津市

  • 市辖区
  • 宁夏回族自治区

  • 中卫市
  • 宁夏回族自治区

  • 吴忠市
  • 宁夏回族自治区

  • 固原市
  • 宁夏回族自治区

  • 石嘴山市
  • 宁夏回族自治区

  • 银川市
  • 安徽省

  • 亳州市
  • 安徽省

  • 六安市
  • 安徽省

  • 合肥市
  • 安徽省

  • 安庆市
  • 安徽省

  • 宣城市
  • 安徽省

  • 宿州市
  • 安徽省

  • 池州市
  • 安徽省

  • 淮北市
  • 安徽省

  • 淮南市
  • 安徽省

  • 滁州市
  • 安徽省

  • 芜湖市
  • 安徽省

  • 蚌埠市
  • 安徽省

  • 铜陵市
  • 安徽省

  • 阜阳市
  • 安徽省

  • 马鞍山市
  • 安徽省

  • 黄山市
  • 山东省

  • 东营市
  • 山东省

  • 临沂市
  • 山东省

  • 威海市
  • 山东省

  • 德州市
  • 山东省

  • 日照市
  • 山东省

  • 枣庄市
  • 山东省

  • 泰安市
  • 山东省

  • 济南市
  • 山东省

  • 济宁市
  • 山东省

  • 淄博市
  • 山东省

  • 滨州市
  • 山东省

  • 潍坊市
  • 山东省

  • 烟台市
  • 山东省

  • 聊城市
  • 山东省

  • 菏泽市
  • 山东省

  • 青岛市
  • 山西省

  • 临汾市
  • 山西省

  • 吕梁市
  • 山西省

  • 大同市
  • 山西省

  • 太原市
  • 山西省

  • 忻州市
  • 山西省

  • 晋中市
  • 山西省

  • 晋城市
  • 山西省

  • 朔州市
  • 山西省

  • 运城市
  • 山西省

  • 长治市
  • 山西省

  • 阳泉市
  • 广东省

  • 东莞市
  • 广东省

  • 中山市
  • 广东省

  • 云浮市
  • 广东省

  • 佛山市
  • 广东省

  • 广州市
  • 广东省

  • 惠州市
  • 广东省

  • 揭阳市
  • 广东省

  • 梅州市
  • 广东省

  • 汕头市
  • 广东省

  • 汕尾市
  • 广东省

  • 江门市
  • 广东省

  • 河源市
  • 广东省

  • 深圳市
  • 广东省

  • 清远市
  • 广东省

  • 湛江市
  • 广东省

  • 潮州市
  • 广东省

  • 珠海市
  • 广东省

  • 肇庆市
  • 广东省

  • 茂名市
  • 广东省

  • 阳江市
  • 广东省

  • 韶关市
  • 广西壮族自治区

  • 北海市
  • 广西壮族自治区

  • 南宁市
  • 广西壮族自治区

  • 崇左市
  • 广西壮族自治区

  • 来宾市
  • 广西壮族自治区

  • 柳州市
  • 广西壮族自治区

  • 桂林市
  • 广西壮族自治区

  • 梧州市
  • 广西壮族自治区

  • 河池市
  • 广西壮族自治区

  • 玉林市
  • 广西壮族自治区

  • 百色市
  • 广西壮族自治区

  • 贵港市
  • 广西壮族自治区

  • 贺州市
  • 广西壮族自治区

  • 钦州市
  • 广西壮族自治区

  • 防城港市
  • 新疆维吾尔自治区

  • 乌鲁木齐市
  • 新疆维吾尔自治区

  • 伊犁哈萨克自治州
  • 新疆维吾尔自治区

  • 克孜勒苏柯尔克孜自治州
  • 新疆维吾尔自治区

  • 克拉玛依市
  • 新疆维吾尔自治区

  • 博尔塔拉蒙古自治州
  • 新疆维吾尔自治区

  • 吐鲁番市
  • 新疆维吾尔自治区

  • 和田地区
  • 新疆维吾尔自治区

  • 哈密市
  • 新疆维吾尔自治区

  • 喀什地区
  • 新疆维吾尔自治区

  • 塔城地区
  • 新疆维吾尔自治区

  • 巴音郭楞蒙古自治州
  • 新疆维吾尔自治区

  • 昌吉回族自治州
  • 新疆维吾尔自治区

  • 自治区直辖县级行政区划
  • 新疆维吾尔自治区

  • 阿克苏地区
  • 新疆维吾尔自治区

  • 阿勒泰地区
  • 江苏省

  • 南京市
  • 江苏省

  • 南通市
  • 江苏省

  • 宿迁市
  • 江苏省

  • 常州市
  • 江苏省

  • 徐州市
  • 江苏省

  • 扬州市
  • 江苏省

  • 无锡市
  • 江苏省

  • 泰州市
  • 江苏省

  • 淮安市
  • 江苏省

  • 盐城市
  • 江苏省

  • 苏州市
  • 江苏省

  • 连云港市
  • 江苏省

  • 镇江市
  • 江西省

  • 上饶市
  • 江西省

  • 九江市
  • 江西省

  • 南昌市
  • 江西省

  • 吉安市
  • 江西省

  • 宜春市
  • 江西省

  • 抚州市
  • 江西省

  • 新余市
  • 江西省

  • 景德镇市
  • 江西省

  • 萍乡市
  • 江西省

  • 赣州市
  • 江西省

  • 鹰潭市
  • 河北省

  • 保定市
  • 河北省

  • 唐山市
  • 河北省

  • 廊坊市
  • 河北省

  • 张家口市
  • 河北省

  • 承德市
  • 河北省

  • 沧州市
  • 河北省

  • 石家庄市
  • 河北省

  • 秦皇岛市
  • 河北省

  • 衡水市
  • 河北省

  • 邢台市
  • 河北省

  • 邯郸市
  • 河南省

  • 三门峡市
  • 河南省

  • 信阳市
  • 河南省

  • 南阳市
  • 河南省

  • 周口市
  • 河南省

  • 商丘市
  • 河南省

  • 安阳市
  • 河南省

  • 平顶山市
  • 河南省

  • 开封市
  • 河南省

  • 新乡市
  • 河南省

  • 洛阳市
  • 河南省

  • 漯河市
  • 河南省

  • 濮阳市
  • 河南省

  • 焦作市
  • 河南省

  • 省直辖县级行政区划
  • 河南省

  • 许昌市
  • 河南省

  • 郑州市
  • 河南省

  • 驻马店市
  • 河南省

  • 鹤壁市
  • 浙江省

  • 丽水市
  • 浙江省

  • 台州市
  • 浙江省

  • 嘉兴市
  • 浙江省

  • 宁波市
  • 浙江省

  • 杭州市
  • 浙江省

  • 温州市
  • 浙江省

  • 湖州市
  • 浙江省

  • 绍兴市
  • 浙江省

  • 舟山市
  • 浙江省

  • 衢州市
  • 浙江省

  • 金华市
  • 海南省

  • 三亚市
  • 海南省

  • 三沙市
  • 海南省

  • 儋州市
  • 海南省

  • 海口市
  • 海南省

  • 省直辖县级行政区划
  • 湖北省

  • 十堰市
  • 湖北省

  • 咸宁市
  • 湖北省

  • 孝感市
  • 湖北省

  • 宜昌市
  • 湖北省

  • 恩施土家族苗族自治州
  • 湖北省

  • 武汉市
  • 湖北省

  • 省直辖县级行政区划
  • 湖北省

  • 荆州市
  • 湖北省

  • 荆门市
  • 湖北省

  • 襄阳市
  • 湖北省

  • 鄂州市
  • 湖北省

  • 随州市
  • 湖北省

  • 黄冈市
  • 湖北省

  • 黄石市
  • 湖南省

  • 娄底市
  • 湖南省

  • 岳阳市
  • 湖南省

  • 常德市
  • 湖南省

  • 张家界市
  • 湖南省

  • 怀化市
  • 湖南省

  • 株洲市
  • 湖南省

  • 永州市
  • 湖南省

  • 湘潭市
  • 湖南省

  • 湘西土家族苗族自治州
  • 湖南省

  • 益阳市
  • 湖南省

  • 衡阳市
  • 湖南省

  • 邵阳市
  • 湖南省

  • 郴州市
  • 湖南省

  • 长沙市
  • 甘肃省

  • 临夏回族自治州
  • 甘肃省

  • 兰州市
  • 甘肃省

  • 嘉峪关市
  • 甘肃省

  • 天水市
  • 甘肃省

  • 定西市
  • 甘肃省

  • 平凉市
  • 甘肃省

  • 庆阳市
  • 甘肃省

  • 张掖市
  • 甘肃省

  • 武威市
  • 甘肃省

  • 甘南藏族自治州
  • 甘肃省

  • 白银市
  • 甘肃省

  • 酒泉市
  • 甘肃省

  • 金昌市
  • 甘肃省

  • 陇南市
  • 福建省

  • 三明市
  • 福建省

  • 南平市
  • 福建省

  • 厦门市
  • 福建省

  • 宁德市
  • 福建省

  • 泉州市
  • 福建省

  • 漳州市
  • 福建省

  • 福州市
  • 福建省

  • 莆田市
  • 福建省

  • 龙岩市
  • 西藏自治区

  • 山南市
  • 西藏自治区

  • 拉萨市
  • 西藏自治区

  • 日喀则市
  • 西藏自治区

  • 昌都市
  • 西藏自治区

  • 林芝市
  • 西藏自治区

  • 那曲市
  • 西藏自治区

  • 阿里地区
  • 贵州省

  • 六盘水市
  • 贵州省

  • 安顺市
  • 贵州省

  • 毕节市
  • 贵州省

  • 贵阳市
  • 贵州省

  • 遵义市
  • 贵州省

  • 铜仁市
  • 贵州省

  • 黔东南苗族侗族自治州
  • 贵州省

  • 黔南布依族苗族自治州
  • 贵州省

  • 黔西南布依族苗族自治州
  • 辽宁省

  • 丹东市
  • 辽宁省

  • 大连市
  • 辽宁省

  • 抚顺市
  • 辽宁省

  • 朝阳市
  • 辽宁省

  • 本溪市
  • 辽宁省

  • 沈阳市
  • 辽宁省

  • 盘锦市
  • 辽宁省

  • 营口市
  • 辽宁省

  • 葫芦岛市
  • 辽宁省

  • 辽阳市
  • 辽宁省

  • 铁岭市
  • 辽宁省

  • 锦州市
  • 辽宁省

  • 阜新市
  • 辽宁省

  • 鞍山市
  • 重庆市

  • 重庆市

  • 市辖区
  • 陕西省

  • 咸阳市
  • 陕西省

  • 商洛市
  • 陕西省

  • 安康市
  • 陕西省

  • 宝鸡市
  • 陕西省

  • 延安市
  • 陕西省

  • 榆林市
  • 陕西省

  • 汉中市
  • 陕西省

  • 渭南市
  • 陕西省

  • 西安市
  • 陕西省

  • 铜川市
  • 青海省

  • 果洛藏族自治州
  • 青海省

  • 海东市
  • 青海省

  • 海北藏族自治州
  • 青海省

  • 海南藏族自治州
  • 青海省

  • 海西蒙古族藏族自治州
  • 青海省

  • 玉树藏族自治州
  • 青海省

  • 西宁市
  • 青海省

  • 黄南藏族自治州
  • 黑龙江省

  • 七台河市
  • 黑龙江省

  • 伊春市
  • 黑龙江省

  • 佳木斯市
  • 黑龙江省

  • 双鸭山市
  • 黑龙江省

  • 哈尔滨市
  • 黑龙江省

  • 大兴安岭地区
  • 黑龙江省

  • 大庆市
  • 黑龙江省

  • 牡丹江市
  • 黑龙江省

  • 绥化市
  • 黑龙江省

  • 鸡西市
  • 黑龙江省

  • 鹤岗市
  • 黑龙江省

  • 黑河市
  • 黑龙江省

  • 齐齐哈尔市